Inverse Square Law

- Relationship between radiance (radiant intensity) and irradiance

$$
\begin{aligned}
d \omega & =\frac{d A}{r^{2}} \\
E & =\frac{d \Phi}{d A}
\end{aligned}
$$

R: Radiant Intensity
E: Irradiance
Φ : Watts
ω : Steradians

$$
\begin{gathered}
R=\frac{d \Phi}{d \omega}=\frac{r^{2} d \Phi}{d A}=r^{2} E \\
E=\frac{R}{r^{2}}
\end{gathered}
$$

Surface Radiance

- Surface acts as light source
- Radiates over a hemisphere

- Surface Radiance: power per unit foreshortened area emitted into a solid angle

$$
L=\frac{d^{2} \Phi}{d A_{f} d \omega} \quad(\text { watts/m2 }- \text { steradian })
$$

Pseudo-Radiance

- Consider two definitions:
- Radiance:
power per unit foreshortened area emitted into a solid angle
- Pseudo-radiance power per unit area emitted into a solid angle
- Why should we work with radiance rather than pseudoradiance?
- Only reason: Radiance is more closely related to our intuitive notion of "brightness".

Lambertian Surfaces

- A particular point P on a Lambertian (perfectly matte) surface appears to have the same brightness no matter what angle it is viewed from.
- Piece of paper
- Matte paint
- Doesn't depend upon incident light angle.
- What does this say about how they emit light?

Lambertian Surfaces

Area of black box $=1$
Area of orange box = 1/cos(Theta)
Foreshortening rule.

Lambertian Surfaces

Relative magnitude of light scattered in each direction. Proportional to cos (Theta).

Lambertian Surfaces

Area of black box $=1$ Area of orange box = 1/cos(Theta)
Foreshortening rule.

The BRDF

The bidirectional reflectance distribution function.

Geometry

- Goal: Relate the radiance of a surface to the irradiance in the image plane of a simple optical system.
α : Solid angle of patch

Light at the Surface

- $\mathrm{E}=$ flux incident on the surface $($ irradiance $)=\frac{\mathrm{d} \Phi}{\mathrm{dA}}$

$$
\begin{aligned}
& \mathrm{i}=\text { incident angle } \\
& \mathrm{e}=\text { emittance angle } \\
& \mathrm{g}=\text { phase angle } \\
& \rho=\text { surface reflectance }
\end{aligned}
$$

Incident Ray

- We need to determine dФ and dA

Reflections from a Surface I

dA

- $d A=d A_{s} \cos i$ \{foreshortening effect in direction of light source\}
$\mathrm{d} \Phi$
- dФ = flux intercepted by surface over area dA
- $d A$ subtends solid angle $d \omega=d A_{s} \cos i / r^{2}$
- $\mathrm{d} \Phi=\mathrm{R} d \omega=R \mathrm{dA} \mathrm{s}_{\mathrm{s}} \cos \mathrm{i} / \mathrm{r}^{2}$
- $E=d \Phi / d A_{s}$

Surface Irradiance: E = R cos i / r${ }^{2}$

Reflections from a Surface II

- Now treat small surface area as an emitter
-because it is bouncing light into the world
- How much light gets reflected?

- E is the surface irradiance
- L is the surface radiance = luminance
- They are related through the surface reflectance function:

$$
\frac{L_{s}}{E}=\rho(i, e, g, \lambda)
$$

Power Concentrated in Lens

$L_{s}=\frac{d^{2} \Phi}{d A_{s} d \omega}$
Luminance of patch (known from previous step)

What is the power of the surface patch as a source in the direction of the lens?

$$
d^{2} \Phi=L_{s} d A_{s} d \omega
$$

Through a Lens Darkly

- In general:
- L_{s} is a function of the angles i and e.
- Lens can be quite large
- Hence, must integrate over the lens solid angle to get dФ

$$
d \Phi=d A_{s} \int_{\Omega} L_{s} d \Omega
$$

Simplifying Assumption

- Lens diameter is small relative to distance from patch

$$
\begin{aligned}
& \mathrm{d} \Phi=\mathrm{d} A_{\mathrm{s}} \int_{\Omega} L_{\mathrm{s}} \mathrm{~d} \Omega \\
& \mathrm{~d} \Phi=\mathrm{d} A_{\mathrm{s}} \mathrm{~L}_{\mathrm{s}} \int_{\Omega} \mathrm{d} \Omega
\end{aligned} \begin{aligned}
& \mathrm{L}_{\mathrm{s}} \text { is a constant and can be } \\
& \text { removed from the integral }
\end{aligned}
$$

Surface area of patch in direction of lens

$$
=d A_{s} \cos e
$$

Solid angle subtended by lens in direction of patch
$=\frac{\text { Area of lens as seen from patch }}{\text { (Distance from lens to patch) }^{2}}$
$=\frac{\pi(\mathrm{d} / 2)^{2} \cos \alpha}{(\mathrm{z} / \cos \alpha)^{2}}$

Putting it Together

$$
\begin{aligned}
d \Phi= & d A_{s} \int_{\Omega} L_{s} d \Omega \\
& =d A_{s} \cos e L_{s} \frac{\pi(d / 2)^{2} \cos \alpha}{(z / \cos \alpha)^{2}}
\end{aligned}
$$

- Power concentrated in lens:

$$
d \Phi=\frac{\pi}{4} L_{s} d A_{s}\left[\frac{d}{Z}\right]^{2} \cos e \cos ^{3} \alpha
$$

- Assuming a lossless lens, this is also the power radiated by the lens as a source.

Through a Lens Darkly

- Image irradiance at $\mathrm{dA}_{\mathrm{i}}=\frac{\mathrm{d} \Phi}{\mathrm{dA}}=\mathrm{E}_{\mathrm{i}}$

$$
E_{i}=L_{S} \frac{d A_{s}}{d A_{i}} \frac{\pi}{4}\left(\frac{d}{Z}\right)^{2} \cos e \cos ^{3} \alpha
$$

Patch ratio

$\frac{d A_{s} \cos e}{(Z / \cos \alpha)^{2}}=\frac{d A_{i} \cos \alpha}{(-f / \cos \alpha)^{2}} \| \frac{d A_{s}}{d A_{i}}=\frac{\cos \alpha}{\cos e}\left(\frac{Z}{-f}\right)^{2}$

The Fundamental Result

- Source Radiance to Image Sensor Irradiance:

$$
\begin{gathered}
\frac{d A_{s}}{d A_{i}}=\frac{\cos \alpha}{\cos e}\left(\frac{Z}{-f}\right)^{2} \\
E_{i}=L_{s} \frac{d A_{s}}{d A_{i}} \frac{\pi}{4}\left[\frac{d}{Z}\right]^{2} \operatorname{cose} \cos ^{3} \alpha \\
E_{i}=L_{s} \frac{\cos \alpha}{\cos e}\left(\frac{Z}{-f}\right)^{2} \frac{\pi}{4}\left[\frac{d}{Z}\right]^{2} \operatorname{cose} \cos { }^{3} \alpha \\
E_{i}=L_{s} \frac{\pi}{4}\left[\frac{d}{-f}\right]^{2} \cos ^{4} \alpha
\end{gathered}
$$

Radiometry Final Result

$$
E_{i}=L_{s} \frac{\pi}{4}\left[\frac{d}{f f}\right]^{2} \cos ^{4} \alpha
$$

- Image irradiance is a function of:
- Scene radiance L_{s}
- Focal length of lens f
- Diameter of lens d
- f/d is often called the 'effective focal length' of the lens
- Off-axis angle α

$\operatorname{Cos}^{4} \alpha$ Light Falloff

Top view shaded by height

Limitation of Radiometry Model

- Surface reflection ρ can be a function of viewing and/or illumination angle

- ρ may also be a function of the wavelength of the light source
- Assumed a point source (sky, for example, is not)

Lambertian Surfaces

- The BRDF for a Lambertian surface is a constant
- $\rho\left(\mathrm{i}, \mathrm{e}, \mathrm{g}, \varphi_{\mathrm{e}}^{\mathrm{e}} \varphi\right)_{\mathrm{i}}=\mathrm{k}$
- function of cos e due to the foreshortening effect
- k is the 'albedo' of the surface
- Good model for diffuse surfaces
- Other models combine diffuse and specular components (Phong, Torrance-Sparrow, Oren-Nayar)

BRDF

- Ron Dror's thesis

Reflection parameters

Figure 2.6. Grid showing range of reflectance properties used in the experiments for a particular real-world illumination map. All the spheres shown have an identical diffuse component. In Pellacini's reparameterization of the Ward model, the specular component depends on the c and d parameters. The strength of specular reflection, c, increases with ρ_{s}, while the sharpness of specular reflection, d, decreases with α. The images were rendered in Radiance, using the techniques described in Appendix B.

Real World Light Variation

Real World Illuminations

Fake Light and Real Light

Artificial Illuminations

(a) Point source
(d) White noise

(b) Multiple points

(c) Extended

(e) Pink noise

Simple and Complex Light

(a)

(b)

Figure 2.9. (a) A shiny sphere rendered under illumination by a point light source. (b) The same sphere rendered under photographically-acquired real-world illumination. Humans perceive reflectance properties more accurately in (b).

BRDF again

Figure 3.1. A viewer observes a surface patch with normal N from direction $\left(\theta_{r}, \phi_{r}\right)$. $L\left(\theta_{i}, \phi_{i}\right)$ represents radiance of illumination from direction $\left(\theta_{i}, \phi_{i}\right)$. The coordinate system is such that N points in direction $(0,0)$.

$$
B\left(\theta_{r}, \phi_{r}\right)=\int_{\phi_{i}=0}^{2 \pi} \int_{\theta_{i}=0}^{\pi / 2} L\left(\theta_{i}, \phi_{i}\right) f\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right) \cos \theta_{i} \sin \theta_{i} d \theta_{i} d \phi_{i}
$$

Figure 3.6. A photograph of a matte sphere, shown against a uniform gray background. This image could also be produced by a chrome sphere under appropriate illumination, but that scenario is highly unlikely.

