

Inverse Square Law

Relationship between radiance (radiant intensity) and irradiance

Surface Radiance: power per unit foreshortened area emitted into a solid angle

$$L = \frac{d^2 \Phi}{dA_f d\omega}$$

(watts/m2 - steradian)

Pseudo-Radiance

Consider two definitions:

• Radiance:

power per unit foreshortened area emitted into a solid angle

• Pseudo-radiance

power per unit area emitted into a solid angle

- Why should we work with radiance rather than pseudoradiance?
 - Only reason: Radiance is more closely related to our intuitive notion of "brightness".

Lambertian Surfaces

- A particular point P on a Lambertian (perfectly matte) surface appears to have the same brightness no matter what angle it is viewed from.
 - Piece of paper
 - Matte paint
- Doesn't depend upon incident light angle.
- What does this say about how they emit light?

Area of black box = 1 Area of orange box = 1/cos(Theta) Foreshortening rule.

Lambertian Surfaces

Relative magnitude of light scattered in each direction. Proportional to cos (Theta).

Area of black box = 1 Area of orange box = 1/cos(Theta) Foreshortening rule.

Computer Vision

The BRDF

The bidirectional reflectance distribution function.

Geometry

Goal: Relate the radiance of a surface to the irradiance in the image plane of a simple optical system.

We need to determine $d\Phi$ and dA

Surface Irradiance: $E = R \cos i / r^2$

Reflections from a Surface II

Now treat small surface area as an emitter

•because it is bouncing light into the world

How much light gets reflected?

- E is the surface irradiance
- L is the surface radiance = luminance
- They are related through the surface reflectance function:

$$\frac{L_{s}}{E} = \rho(i,e,g,\lambda)$$

May also be a function of the wavelength of the light

 $dA_{s}d\omega$

Luminance of patch (known from previous step)

What is the power of the surface patch as a source in the direction of the lens?

$$d^2\Phi = L_s dA_s d\omega$$

Computer Vision

Through a Lens Darkly

In general:

- L_s is a function of the angles i and e.
- Lens can be quite large
- Hence, must integrate over the lens solid angle to get $d\Phi$

$$d\Phi = dA_{s} \int_{\Omega} L_{s} d\Omega$$

Lens diameter is small relative to distance from patch

Putting it Together

$$d\Phi = dA_{s} \int L_{s} d\Omega$$

= dA_{s} cos e L_{s} $\frac{\pi (d/2)^{2} cos \alpha}{(z / cos \alpha)^{2}}$

Power concentrated in lens:

$$d\Phi = \frac{\pi}{4} L_s dA_s \left[\frac{d}{Z}\right]^2 \cos e \cos^3 \alpha$$

Assuming a lossless lens, this is also the power radiated by the lens as a source.

$$\frac{dA_{s}\cos e}{\left(Z/\cos \alpha\right)^{2}} = \frac{dA_{i}\cos \alpha}{\left(-f/\cos \alpha\right)^{2}} \qquad \qquad \frac{dA_{s}}{dA_{i}} = \frac{\cos \alpha}{\cos e} \left(\frac{Z}{-f}\right)^{2}$$

Computer Visior

The Fundamental Result

Source Radiance to Image Sensor Irradiance:

$$\frac{dA_{s}}{dA_{i}} = \frac{\cos \alpha}{\cos e} \left(\frac{Z}{-f}\right)^{2}$$

$$E_i = L_s \frac{dA_s}{dA_i} \frac{\pi}{4} \left[\frac{d}{Z}\right]^2 \cos e \cos \frac{3}{\alpha}$$

$$E_{i} = L_{s} \frac{\cos \alpha}{\cos e} \left(\frac{Z}{-f}\right)^{2} \frac{\pi}{4} \left(\frac{d}{Z}\right)^{2} \cos e \cos \frac{3}{\alpha}$$

$$E_{i} = L_{s} \frac{\pi}{4} \left[\frac{d}{-f}\right]^{2} \cos^{4}\alpha$$

Radiometry Final Result

$$E_{i} = L_{s} \frac{\pi}{4} \left[\frac{d}{-f}\right]^{2} \cos^{4} \alpha$$

Image irradiance is a function of:

- Scene radiance L_s
- Focal length of lens f
- Diameter of lens d
 - f/d is often called the 'effective focal length' of the lens
- \bullet Off-axis angle α

Computer Visior

$\cos^4 \alpha$ Light Falloff

Top view shaded by height

Computer Vision

Limitation of Radiometry Model

Surface reflection ρ can be a function of viewing and/or illumination angle

- ρ may also be a function of the wavelength of the light source
- Assumed a point source (sky, for example, is not)

Introduction to

Computer Visio

Lambertian Surfaces

- The BRDF for a Lambertian surface is a constant
 - $\rho(\mathbf{i}, \mathbf{e}, \mathbf{g}, \boldsymbol{\varphi}_{\mathbf{e}} \boldsymbol{\varphi}) = \mathbf{k}$
 - function of cos e due to the foreshortening effect
 - k is the 'albedo' of the surface
 - Good model for diffuse surfaces
- Other models combine diffuse and specular components (Phong, Torrance-Sparrow, Oren-Nayar)

BRDF

Ron Dror's thesis

Reflection parameters

Figure 2.6. Grid showing range of reflectance properties used in the experiments for a particular real-world illumination map. All the spheres shown have an identical diffuse component. In Pellacini's reparameterization of the Ward model, the specular component depends on the c and d parameters. The strength of specular reflection, c, increases with ρ_s , while the sharpness of specular reflection, d, decreases with α . The images were rendered in *Radiance*, using the techniques described in Appendix B.

Computer Vision

Real World Light Variation

Real World Illuminations

(a) "Beach"

(b) "Building" (c)

(c) "Campus"

(d) "Eucalyptus"

(e) "Galileo"

(f) "Grace"

(g) "Kitchen"

(h) "St. Peter's"

(i) "Uffizi"

Computer Vision

Fake Light and Real Light

Artificial Illuminations

(a) Point source

(b) Multiple points

(c) Extended

(d) White noise

(e) Pink noise

Computer Vision

Simple and Complex Light

Figure 2.9. (a) A shiny sphere rendered under illumination by a point light source. (b) The same sphere rendered under photographically-acquired real-world illumination. Humans perceive reflectance properties more accurately in (b).

Figure 3.1. A viewer observes a surface patch with normal N from direction (θ_r, ϕ_r) . $L(\theta_i, \phi_i)$ represents radiance of illumination from direction (θ_i, ϕ_i) . The coordinate system is such that N points in direction (0, 0).

$$B(\theta_r, \phi_r) = \int_{\phi_i=0}^{2\pi} \int_{\theta_i=0}^{\pi/2} L(\theta_i, \phi_i) f(\theta_i, \phi_i; \theta_r, \phi_r) \cos \theta_i \sin \theta_i \, d\theta_i \, d\phi_i,$$

Computer Vision

Figure 3.6. A photograph of a matte sphere, shown against a uniform gray background. This image could also be produced by a chrome sphere under appropriate illumination, but that scenario is highly unlikely.